高质量C++教程 — 第9章 类的构造函数、析构函数与赋

高质量C++教程 -- 第9章 类的构造函数、析构函数与赋值函数
来源:www.vcworld.net 

构造函数、析构函数与赋值函数是每个类最基本的函数。它们太普通以致让人容易麻痹大意,其实这些貌似简单的函数就象没有顶盖的下水道那样危险。

每个类只有一个析构函数和一个赋值函数,但可以有多个构造函数(包含一个拷贝构造函数,其它的称为普通构造函数)。对于任意一个类A,如果不想编写上述函数,C++编译器将自动为A产生四个缺省的函数,如

   
A(void);                   
// 缺省的无参数构造函数

    A(const A
&a);               
// 缺省的拷贝构造函数

   
~A(void);                   
// 缺省的析构函数

    A
& operate =(const A
&a);   
// 缺省的赋值函数

 

这不禁让人疑惑,既然能自动生成函数,为什么还要程序员编写?

原因如下:

(1)如果使用“缺省的无参数构造函数”和“缺省的析构函数”,等于放弃了自主“初始化”和“清除”的机会,C++发明人Stroustrup的好心好意白费了。

(2)“缺省的拷贝构造函数”和“缺省的赋值函数”均采用“位拷贝”而非“值拷贝”的方式来实现,倘若类中含有指针变量,这两个函数注定将出错。

      

对于那些没有吃够苦头的C++程序员,如果他说编写构造函数、析构函数与赋值函数很容易,可以不用动脑筋,表明他的认识还比较肤浅,水平有待于提高。

本章以类String的设计与实现为例,深入阐述被很多教科书忽视了的道理。String的结构如下:

    class
String

    {

     
public:

       
String(const char *str =
NULL);    //
普通构造函数

       
String(const String
&other);   
// 拷贝构造函数

       
~
String(void);                   
// 析构函数

       
String & operate =(const String
&other);   
// 赋值函数

     
private:

       
char     
*m_data;               
// 用于保存字符串

    };

9.1 构造函数与析构函数的起源

作为比C更先进的语言,C++提供了更好的机制来增强程序的安全性。C++编译器具有严格的类型安全检查功能,它几乎能找出程序中所有的语法问题,这的确帮了程序员的大忙。但是程序通过了编译检查并不表示错误已经不存在了,在“错误”的大家庭里,“语法错误”的地位只能算是小弟弟。级别高的错误通常隐藏得很深,就象狡猾的罪犯,想逮住他可不容易。

根据经验,不少难以察觉的程序错误是由于变量没有被正确初始化或清除造成的,而初始化和清除工作很容易被人遗忘。Stroustrup在设计C++语言时充分考虑了这个问题并很好地予以解决:把对象的初始化工作放在构造函数中,把清除工作放在析构函数中。当对象被创建时,构造函数被自动执行。当对象消亡时,析构函数被自动执行。这下就不用担心忘了对象的初始化和清除工作。

构造函数与析构函数的名字不能随便起,必须让编译器认得出才可以被自动执行。Stroustrup的命名方法既简单又合理:让构造函数、析构函数与类同名,由于析构函数的目的与构造函数的相反,就加前缀‘~’以示区别。

除了名字外,构造函数与析构函数的另一个特别之处是没有返回值类型,这与返回值类型为void的函数不同。构造函数与析构函数的使命非常明确,就象出生与死亡,光溜溜地来光溜溜地去。如果它们有返回值类型,那么编译器将不知所措。为了防止节外生枝,干脆规定没有返回值类型。(以上典故参考了文献[Eekel,
p55-p56])

9.2 构造函数的初始化表

构造函数有个特殊的初始化方式叫“初始化表达式表”(简称初始化表)。初始化表位于函数参数表之后,却在函数体 {}
之前。这说明该表里的初始化工作发生在函数体内的任何代码被执行之前。

构造函数初始化表的使用规则:

如果类存在继承关系,派生类必须在其初始化表里调用基类的构造函数。

例如

    class
A

    {…

       
A(int
x);       
// A的构造函数

}; 

    class B :
public A

    {…

       
B(int x, int y);// B的构造函数

    };

    B::B(int
x, int y)

    
:
A(x)            
// 在初始化表里调用A的构造函数

    {

     

}  

类的const常量只能在初始化表里被初始化,因为它不能在函数体内用赋值的方式来初始化(参见5.4节)。

类的数据成员的初始化可以采用初始化表或函数体内赋值两种方式,这两种方式的效率不完全相同。

非内部数据类型的成员对象应当采用第一种方式初始化,以获取更高的效率。例如

    class
A

{…

   
A(void);               
// 无参数构造函数

    A(const A
&other);       
// 拷贝构造函数

    A
& operate =( const A
&other);   
// 赋值函数

};

 

    class
B

    {

     
public:

       
B(const A
&a);   
// B的构造函数

     
private:   

       

m_a;           
// 成员对象

};

 

示例9-2(a)中,类B的构造函数在其初始化表里调用了类A的拷贝构造函数,从而将成员对象m_a初始化。

示例9-2
(b)中,类B的构造函数在函数体内用赋值的方式将成员对象m_a初始化。我们看到的只是一条赋值语句,但实际上B的构造函数干了两件事:先暗地里创建m_a对象(调用了A的无参数构造函数),再调用类A的赋值函数,将参数a赋给m_a。

B::B(const A &a)

: m_a(a)

{

}

B::B(const A &a)

{

m_a = a;

}

示例9-2(a) 成员对象在初始化表中被初始化 示例9-2(b)
成员对象在函数体内被初始化

 

对于内部数据类型的数据成员而言,两种初始化方式的效率几乎没有区别,但后者的程序版式似乎更清晰些。若类F的声明如下:

class F

{

public:

F(int x, int y); // 构造函数

private:

int m_x, m_y;

int m_i, m_j;

}

示例9-2(c)中F的构造函数采用了第一种初始化方式,示例9-2(d)中F的构造函数采用了第二种初始化方式。

F::F(int x, int y)

: m_x(x), m_y(y)

{

m_i = 0;

m_j = 0;

}

F::F(int x, int y)

{

m_x = x;

m_y = y;

m_i = 0;

m_j = 0;

}

示例9-2(c) 数据成员在初始化表中被初始化 示例9-2(d)
数据成员在函数体内被初始化

9.3 构造和析构的次序

构造从类层次的最根处开始,在每一层中,首先调用基类的构造函数,然后调用成员对象的构造函数。析构则严格按照与构造相反的次序执行,该次序是唯一的,否则编译器将无法自动执行析构过程。

一个有趣的现象是,成员对象初始化的次序完全不受它们在初始化表中次序的影响,只由成员对象在类中声明的次序决定。这是因为类的声明是唯一的,而类的构造函数可以有多个,因此会有多个不同次序的初始化表。如果成员对象按照初始化表的次序进行构造,这将导致析构函数无法得到唯一的逆序。[Eckel,
p260-261]

9.4
示例:类String的构造函数与析构函数

// String的普通构造函数

String::String(const char *str)

{

if(str==NULL)

{

m_data = new char[1];

*m_data = ‘’;

}

else

{

int length = strlen(str);

m_data = new char[length+1];

strcpy(m_data, str);

}

}

 

// String的析构函数

String::~String(void)

{

delete [] m_data;

// 由于m_data是内部数据类型,也可以写成 delete m_data;

}

9.5 不要轻视拷贝构造函数与赋值函数

由于并非所有的对象都会使用拷贝构造函数和赋值函数,程序员可能对这两个函数有些轻视。请先记住以下的警告,在阅读正文时就会多心:

本章开头讲过,如果不主动编写拷贝构造函数和赋值函数,编译器将以“位拷贝”的方式自动生成缺省的函数。倘若类中含有指针变量,那么这两个缺省的函数就隐含了错误。以类String的两个对象a,b为例,假设a.m_data的内容为“hello”,b.m_data的内容为“world”。

现将a赋给b,缺省赋值函数的“位拷贝”意味着执行b.m_data =
a.m_data。这将造成三个错误:一是b.m_data原有的内存没被释放,造成内存泄露;二是b.m_data和a.m_data指向同一块内存,a或b任何一方变动都会影响另一方;三是在对象被析构时,m_data被释放了两次。

 

拷贝构造函数和赋值函数非常容易混淆,常导致错写、错用。拷贝构造函数是在对象被创建时调用的,而赋值函数只能被已经存在了的对象调用。以下程序中,第三个语句和第四个语句很相似,你分得清楚哪个调用了拷贝构造函数,哪个调用了赋值函数吗?

String a(“hello”);

String b(“world”);

String c = a; // 调用了拷贝构造函数,最好写成 c(a);

c = b; // 调用了赋值函数

本例中第三个语句的风格较差,宜改写成String c(a) 以区别于第四个语句。

9.6
示例:类String的拷贝构造函数与赋值函数

// 拷贝构造函数

String::String(const String &other)

{

// 允许操作other的私有成员m_data

int length = strlen(other.m_data);

m_data = new char[length+1];

strcpy(m_data, other.m_data);

}

 

// 赋值函数

String & String::operate =(const String
&other)

{

// (1) 检查自赋值

if(this == &other)

return *this;

 

// (2) 释放原有的内存资源

delete [] m_data;

 

// (3)分配新的内存资源,并复制内容

int length = strlen(other.m_data);

m_data = new char[length+1];

strcpy(m_data, other.m_data);

 

// (4)返回本对象的引用

return *this;

}

 

类String拷贝构造函数与普通构造函数(参见9.4节)的区别是:在函数入口处无需与NULL进行比较,这是因为“引用”不可能是NULL,而“指针”可以为NULL。

类String的赋值函数比构造函数复杂得多,分四步实现:

(1)第一步,检查自赋值。你可能会认为多此一举,难道有人会愚蠢到写出 a = a
这样的自赋值语句!的确不会。但是间接的自赋值仍有可能出现,例如

// 内容自赋值

b = a;

c = b;

a = c;

// 地址自赋值

b = &a;

a = *b;

也许有人会说:“即使出现自赋值,我也可以不理睬,大不了化点时间让对象复制自己而已,反正不会出错!”

他真的说错了。看看第二步的delete,自杀后还能复制自己吗?所以,如果发现自赋值,应该马上终止函数。注意不要将检查自赋值的if语句

if(this == &other)

错写成为

if( *this == other)

(2)第二步,用delete释放原有的内存资源。如果现在不释放,以后就没机会了,将造成内存泄露。

(3)第三步,分配新的内存资源,并复制字符串。注意函数strlen返回的是有效字符串长度,不包含结束符‘’。函数strcpy则连‘’一起复制。

(4)第四步,返回本对象的引用,目的是为了实现象 a = b = c 这样的链式表达。注意不要将 return *this
错写成 return this 。那么能否写成return other 呢?效果不是一样吗?

不可以!因为我们不知道参数other的生命期。有可能other是个临时对象,在赋值结束后它马上消失,那么return
other返回的将是垃圾。

9.7
偷懒的办法处理拷贝构造函数与赋值函数

如果我们实在不想编写拷贝构造函数和赋值函数,又不允许别人使用编译器生成的缺省函数,怎么办?

偷懒的办法是:只需将拷贝构造函数和赋值函数声明为私有函数,不用编写代码。

例如:

class A

{ …

private:

A(const A &a); // 私有的拷贝构造函数

A & operate =(const A &a); //
私有的赋值函数

};

 

如果有人试图编写如下程序:

A b(a); // 调用了私有的拷贝构造函数

b = a; // 调用了私有的赋值函数

编译器将指出错误,因为外界不可以操作A的私有函数。

9.8 如何在派生类中实现类的基本函数

基类的构造函数、析构函数、赋值函数都不能被派生类继承。如果类之间存在继承关系,在编写上述基本函数时应注意以下事项:

u 派生类的构造函数应在其初始化表里调用基类的构造函数。

u 基类与派生类的析构函数应该为虚(即加virtual关键字)。例如

#include

class Base

{

public:

virtual ~Base() { cout<< "~Base"
<< endl ; }

};

 

class Derived : public Base

{

public:

virtual ~Derived() { cout<<
"~Derived" << endl ; }

};

 

void main(void)

{

Base * pB = new Derived; // upcast

delete pB;

}

 

输出结果为:

~Derived

~Base

如果析构函数不为虚,那么输出结果为

~Base

 

u 在编写派生类的赋值函数时,注意不要忘记对基类的数据成员重新赋值。例如:

class Base

{

public:

Base & operate =(const Base
&other); // 类Base的赋值函数

private:

int m_i, m_j, m_k;

};

 

class Derived : public Base

{

public:

Derived & operate =(const Derived
&other); // 类Derived的赋值函数

private:

int m_x, m_y, m_z;

};

 

Derived & Derived::operate =(const Derived
&other)

{

//(1)检查自赋值

if(this == &other)

return *this;

 

//(2)对基类的数据成员重新赋值

Base::operate =(other); // 因为不能直接操作私有数据成员

 

//(3)对派生类的数据成员赋值

m_x = other.m_x;

m_y = other.m_y;

m_z = other.m_z;

 

//(4)返回本对象的引用

return *this;

}

 

9.9 一些心得体会

有些C++程序设计书籍称构造函数、析构函数和赋值函数是类的“Big-Three”,它们的确是任何类最重要的函数,不容轻视。

也许你认为本章的内容已经够多了,学会了就能平安无事,我不能作这个保证。如果你希望吃透“Big-Three”,请好好阅读参考文献[Cline]
[Meyers] [Murry]。

高质量C++教程 — 第5章 常量

高质量C++教程 -- 第5章 常量
来源:www.vcworld.net 

常量是一种标识符,它的值在运行期间恒定不变。C语言用
#define来定义常量(称为宏常量)。C++ 语言除了
#define外还可以用const来定义常量(称为const常量)。

 

5.1 为什么需要常量

如果不使用常量,直接在程序中填写数字或字符串,将会有什么麻烦?

(1) 程序的可读性(可理解性)变差。程序员自己会忘记那些数字或字符串是什么意思,用户则更加不知它们从何处来、表示什么。

(2) 在程序的很多地方输入同样的数字或字符串,难保不发生书写错误。

(3) 如果要修改数字或字符串,则会在很多地方改动,既麻烦又容易出错。

●【规则5-1-1】 尽量使用含义直观的常量来表示那些将在程序中多次出现的数字或字符串。

例如:

#define MAX 100

const int MAX = 100; // C++ 语言的const常量

const float PI = 3.14159; // C++ 语言的const常量

 

5.2 const 与
#define的比较

C++ 语言可以用const来定义常量,也可以用 #define来定义常量。但是前者比后者有更多的优点:

(1)
const常量有数据类型,而宏常量没有数据类型。编译器可以对前者进行类型安全检查。而对后者只进行字符替换,没有类型安全检查,并且在字符替换可能会产生意料不到的错误(边际效应)。

(2) 有些集成化的调试工具可以对const常量进行调试,但是不能对宏常量进行调试。

●【规则5-2-1】在C++ 程序中只使用const常量而不使用宏常量,即const常量完全取代宏常量。

 

5.3 常量定义规则

●【规则5-3-1】需要对外公开的常量放在头文件中,不需要对外公开的常量放在定义文件的头部。为便于管理,可以把不同模块的常量集中存放在一个公共的头文件中。

●【规则5-3-2】如果某一常量与其它常量密切相关,应在定义中包含这种关系,而不应给出一些孤立的值。

例如:

const float RADIUS = 100;

const float DIAMETER = RADIUS * 2;

 

5.4 类中的常量

有时我们希望某些常量只在类中有效。由于#define定义的宏常量是全局的,不能达到目的,于是想当然地觉得应该用const修饰数据成员来实现。const数据成员的确是存在的,但其含义却不是我们所期望的。const数据成员只在某个对象生存期内是常量,而对于整个类而言却是可变的,因为类可以创建多个对象,不同的对象其const数据成员的值可以不同。

不能在类声明中初始化const数据成员。以下用法是错误的,因为类的对象未被创建时,编译器不知道SIZE的值是什么。

class A

{…

const int SIZE = 100; // 错误,企图在类声明中初始化const数据成员

int array[SIZE]; // 错误,未知的SIZE

};

const数据成员的初始化只能在类构造函数的初始化表中进行,例如

class A

{…

A(int size); // 构造函数

const int SIZE ;

};

A::A(int size) : SIZE(size) // 构造函数的初始化表

{

}

A a(100); // 对象 a 的SIZE值为100

A b(200); // 对象 b 的SIZE值为200

怎样才能建立在整个类中都恒定的常量呢?别指望const数据成员了,应该用类中的枚举常量来实现。例如

class A

{…

enum { SIZE1 = 100, SIZE2 = 200}; // 枚举常量

int array1[SIZE1];

int array2[SIZE2];

};

枚举常量不会占用对象的存储空间,它们在编译时被全部求值。枚举常量的缺点是:它的隐含数据类型是整数,其最大值有限,且不能表示浮点数(如PI=3.14159)。